

The velocities we experience in daily life are so low that the theory of special relativity plays no role

Example: the addition of velocities

 $v_{train} = 200 \text{ km/h}$ $v_{passenger} = 5 \text{ km/h}$ $v_{total} = 205 \text{ km/h}$

Gedankenexperiment: Enterprise travels at $v = c/2 = 150\ 000\ km/sec$ towards Klingon ship and fires photon torpedo At what speed do the Klingons see the photon torpedo approach?

450 000 km/sec ?

Very different at 'high' velocities

Gedankenexperiment: Enterprise travels at $v = c/2 = 150\ 000\ km/sec$ towards Klingon ship and fires photon torpedo At what speed do the Klingons see the photon torpedo approach?

450 000 km/sec ? No, with 300 000 km/sec ! The central principle of the theory of special relativity (SR):

The speed of light does not depend on the motion of the source or the observer and its value in vacuum is always

c = 299 792.458 km/sec

From this principle, alle laws of SR can be derived

$$(ct'/2)^{2} = (ct/2)^{2} + (vt'/2)^{2}$$
Solve for t' :

$$t' = \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} t$$
i.e. for an observer moving with respect to the clock, it ticks more slowly, by the time dilation factor

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

Tests with "real" (macroscopic) clocks

Atomic clocks in a plane(1970)

after 60 hour flight:

53 nsec

difference to clock on ground

accurate tests of SR need much faster clocks

Is all this useful for something?

During the last decade, the global positioning system (GPS) has become almost a household item. Due to the altitude and speed of the GPS satellites, general and special relativity have to be taken into account. Otherwise, position readout errors of up to 1 km would accumulate during a day (bad for yachting and smart bombs)!

Test theories of special relativity

Test theory: general theoretical framework, reduces to special relativity (SR) for a particular choice of the functions.

Mansouri & SexI [Gen.Rel. & Gravit. 8, 497 (1977)]:

- preferred system Σ , speed of light c_0 is assumed constant and isotropic in this frame only
- laboratory system S, moving with velocity w w.r.t. Σ . Σ e.g. 3K microwave background, $w \approx 300 \text{ km/sec}$

